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This paper investigates the inadequacy of using the growth rate from the dispersion relation to
represent the bandwidth of a cyclotron autoresonance maser (CARM) amplifier. It is shown that the
dispersion relation can accurately predict the amplifier’s bandwidth, but at least three waves that the
electron beam couples to must be retained in the calculation. Interference between these waves must be
included. The bandwidth of the coupling coefficient for the forward growing wave can be much nar-
rower than the bandwidth of this wave’s growth rate. In addition, the input signal has been observed to
be almost totally absorbed by the electron beam at a specific frequency which is a function of the operat-
ing conditions. This phenomenon is caused by the beating between the forward constant amplitude wave
and the forward growing wave. It is analogous to the Kompfner dip in a conventional linear beam trav-
eling wave tube and can, therefore, become a useful diagnostic for determining the experimental parame-

ters of a CARM amplifier.

PACS number(s): 41.75.—1, 42.52.+x

I. INTRODUCTION

Considerable interest has arisen in developing high
power sources of radiation in millimeter and submillime-
ter regime. One of the promising candidates is the elec-
tron cyclotron autoresonance maser (CARM) [1-7]. In
this device, a relativistic electron beam interacts with a
right circularly polarized electromagnetic wave, gyrating
along a magnetic field. Resonance between the electrons
and the wave takes place when w=k,v, +(1_, where o is
the angular frequency of the wave, 0, =eB /ymc is the
relativistic electron cyclotron frequency, ¥ is the electron
Lorentz factor, k, and v, are the propagation constant of
the wave and the drift velocity of the electrons along the
magnetic field. The variation of the Doppler shift and
the relativistic cyclotron frequency in the above reso-
nance condition results in axial bunching and azimuthal
bunching processes, respectively. These two bunching
processes cancel and compete with each other [8].

The Doppler shift term k,v, becomes significant for
the CARM interaction. If the wave phase velocity is
equal to the speed of light, it has been shown [2] that
when electrons lose their energy to the wave, the increase
in ©, will be exactly compensated by a decrease in k,v,.
The electrons will then maintain their resonance with the
wave over a long interaction time. However, this au-
toresonance condition nevertheless results in a low
growth rate due to the exact cancellation between the axi-
al and azimuthal bunching. Consequently, the CARM is
usually operated with the wave phase velocity slightly
larger than the speed of light to avoid this exact compen-
sation between the two bunching mechanisms [2,8].

One important physical issue addressed in Ref. [9] is
concerned with the effective bandwidth of the CARM. It
has been found that the bandwidth of a CARM amplifier,
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predicted by the dispersion relation, can exceed one oc-
tave, whereas, the particle simulation shows that the
bandwidth is substantially less. Good agreement exists
only near the frequency at which the electron beam is
well synchronized with the waveguide mode. Therefore,
the discrepancy between linear theory and particle simu-
lation has been attributed to the invalidity of the linear
theory at frequencies outside the close resonance region
[8]. This issue is re-addressed and examined in this study.
A different conclusion is obtained. The growth rate
solved by the dispersion relation is verified to remain val-
id even when electrons are not closely synchronous with
the wave. The discrepancy between linear theory and
particle simulation is demonstrated to be caused by
launching loss effects, which can become extremely large
and severely deteriorates the bandwidth of a CARM
amplifier. It is well known that the launching loss can
significantly reduce the gain of traveling wave devices
[10,11]. However, such drastically detrimental effects on
the bandwidth of a CARM had not heretofore been ex-
plored.

The launching loss is due to the fact that four possible
solutions are available for the wave number at any real
frequency when solving the dispersion relation for a
CARM [9,12-14]. These solutions correspond to four
waves excited by the interaction between the wave and
electrons and only one of these four waves can spatially
grow along the tube. Furthermore, they must all be
present to satisfy the initial boundary conditions in a
finite or semifinite system. In other words, the input rf
signal actually couples into four waves in the beginning
of the interaction. The dispersion relation can only be
used for predicting the growth rates and propagation
constants of these four waves. However, it cannot pro-
vide information regarding the coupling of the input
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power to each of the four waves.

Meanwhile, the input signal has been observed to be al-
most totally absorbed by the electron beam at a specific
frequency for each operating condition. This
phenomenon is well known in conventional linear beam
traveling-wave-tube (TWT) amplifiers as the Kompfner
dip [15,16]. The Kompfner dip has become a useful tech-
nique in determining the characteristics of a TWT. This
dip is analogously capable of becoming an experimental
technique to characterize a CARM amplifier. The im-
portance of this study is to provide not only the physical
insight into the effective bandwidth of a CARM but also
a potential experimental method to determine the operat-
ing conditions of a CARM.

In this paper, the linear theory developed in Refs.
[17-19] is employed, where the Laplace transformation is
used for solving the Maxwell-Vlasov integro-differential
equation. Hence, this theory includes the launching loss
in the analysis. The same technique has also been used
for analyzing multimode interactions in CARM
amplifiers in Refs. [20] and [21]. In addition, a fast-

J

time-scale nonlinear theory, which does not assume that
o—k,v,—sQ,/y =0, is developed to verify the accuracy
of the slow-time-scale linear theory. It is found that the
slow-time-scale theory is valid even for interactions quite
far from resonance.

II. LINEAR THEORY

The linear theory is briefly described in the following.
We consider either an annular or an axis-encircling elec-
tron beam traveling along a cylindrical waveguide, guid-
ed by an external magnetic field. A circularly polarized
TE,,, waveguide mode is injected into the waveguide to
interact with the electron beam. The spatial evolution of
the wave along the waveguide can be determined as fol-
lows [18,19]:

Flz)= F(O)N(k,)+F'(0) (—ik.2) )
z —Ei‘, Dk, exp(—jkyz) ,
where k; is the ith root of the following equation:

2 167%e2C2, = . rmex + f
O g2 g2 0T € Tmn ¢ * A
Dl k)= —ki—kjy = — = Efo redre [ "pidp, [ dp. 7
x _Bi(mz_kzzcz sm(kmn c rL)
(a)_k2V2—SQ 0/7/)
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(0—k,v,—5Q./7)
kmnVlUsm( mnrckmn )
— =0, (2)
(0—k,v,—5Q./7)
D'(k,)=dD(k,)/dk,, and
677362C2 hed "cmax © © fo —Vikszs ( mnrck )
k,)=—jk,+j—— d d dp,—
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(kmn c mnr )
L 3)
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The definitions of H,, (x,y), T, (x,y), and U,,, (x,y) are given as follows:
H, (x,y)=J2_, (x)JXy),
Tsm(x,y)=2Hs,,,(x,y)+yJ;(y){ZJ;( )—=J(y) | — s,m(x)JS_m( x)+J2 )T (X, (x) J,
and
Uy (,9)= = 1pJ{ )T -T2y -1 (X) =T () ]I D] 1 ()= T3, ()] 4)

In the above, f, is the equilibrium distribution function
of an electron beam, k, is the complex axial wave num-
ber, k=w/c. C2,=[J2 (X, 1—m?/x2 )]}, x,,, is
the nth root of the Bessel function J,,(x), r, is the

[

waveguide radius, k,, =x,,, /r,, r; is the electron Lar-
mor radius, r, is the guiding center radius, Q. ,=eB,/mc
is the electron cyclotron frequency and s is the cyclotron
harmonic number. F(0) and F’(0) are the amplitudes of
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the wave and its first derivative at z=0.

The power flow in the waveguide can be calculated by
integrating the Ponyting vector over the waveguide cross
section, which yields
¢ 1

87 okl

P,=Re [fdAé(EB*) Re{F(z)jF'(2)*} .

(5)
The linear gain is then given by

P,(z) _ Im{F(2)F'(2)*}

G =
D=0 In{FO)F(0)7]

(6)

In deriving Eq. (1), small signal assumptions have been
made so that the first-order perturbations of all quantities
are smaller than the zero-order quantities and the contri-
butions from the higher-order terms are negligible in the
analysis. In addition, the operating conditions are as-
sumed to be w—k,v,—sQ/y =0 so that the contribu-
tions from other cyclotron harmonics can be neglected
except for the sth harmonic. Equation (1) results from
applying the Laplace transformation to the linearized
Maxwell-Vlasov equation. The initial boundary condi-
tion can subsequently be taken into account. Equation
(2) is notably the well-known dispersion relation [9] for
the cyclotron maser instability that originates from the
coupling between the waveguide mode (0?/c*—k2—k2,
=0) and the beam mode (0 —k,v, —sQ,/y =0). It can,
therefore, determine the waves to be excited and also
their growth rates. Equation (2) further indicates that

four roots can be obtained by solving the dispersion rela-
tion, corresponding to four different waves. They are a
backward constant amplitude wave, a forward constant
amplitude wave, a forward growing wave and a forward
decaying wave. The last two waves correspond to a pair
of complex conjugate solutions to the dispersion relation.
On the other hand, the terms inside the square brackets
in Eq. (1) represent the coupling of the waves by the input
signal.

III. NONLINEAR THEORY

A self-consistent nonlinear simulation model is used to
verify the validity of the linear theory described above.
We consider a relativistic electron beam traveling
through a waveguide, guided by an external dc magnetic
field applied along the z axis. The B, component of the
circularly polarized TE,,, waveguide mode is given by

B,=By(z)J, (k,,r)cos(wt —mO—PLBz+D(z)), (7)

where ®(z) is the wave phase. With a source current J,
Maxwell’s equations become
2
VZ B — l _.a_ B=

4T _~+
ot ®

where B is the wave magnetic field. Taking the z com-
ponent of Eq. (8) and substituting Eq. (7) for B,, the cir-
cuit equations that govern the spatial rate of change of
the wave amplitude and phase can be determined by
straightforward algebra and are given by

{Bg (2)+By(2)[20'(2)B—®'(2)*]} = cSzm,, ﬁds(.79km,,J,',,(km,,r)cos(a)t-—Bz—m0+‘1>(z))
—%i,Jm(km,,r)sin(wt—Bz—m9+<1>(z))>, )

(2B (2)[B—D'(2)]— By (2)®"(2)} = csz,,,,, gﬁsdsmkmnj;,,(km,,r)sin(wt—ﬁz—me+<1>(z))
+%7,Jm<kmnr)cos(m—Bz—m9+<1>(z>)), , (10)

where S, =r2J2(x,,,(1—m?/x2,), and J, and J, are
the radial and azimuthal components of the current and
(f), is defined as

(f>,=5“;7f02’”‘“f dr .

The electron dynamics are required for evaluating the
current source terms on the right-hand sides of Eq. (9)
and (10). They are governed by the Lorentz force and are
given by

d—p=—~eE—evB . (11)
dt

The electrons are subject to the forces imposed by the
wave and external dc magnetic field. It is worth noting
that the exact field components will be used in evaluating

Eq. (9) without any simplification based on the resonance
condition. Consequently, the equations are valid for any
synchronism situation between the wave and electron
beam.

The two-wave equations coupled with the equations of
motion for each test electron consist of a self-consistent
simulation model. They comprise a system of TN, +4
simultaneous ordinary differential equations (N, is the
number of test electrons) and are solved by the Runge-
Kutta method. The precision of the simulation is moni-
tored by the energy conservation law and the redundant
equation of motion.

IV. RESULTS AND DISCUSSION

Throughout this section, we will consider an electron
beam interacting with a TE,, waveguide mode at the first
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cyclotron harmonic. The system parameters are: beam
voltage V,=700 kV, beam current I,=7 A,
a(v, /v,)=0.525, r./r,=0.48, and B;=1.24875B,,
where the grazing magnetic field B, is the value at which
the cyclotron beam mode (0—kv,—sQ./y=0) is
tangent to the waveguide mode (w?/c?—k2—k2,=0).

The solutions of the dispersion relation [Eq. (2)] are de-
picted in Fig. 1. The real parts (k,,) and imaginary parts
(k,;) of the solved complex wave numbers are displayed in
Fig. 1(a) and Fig. 1(b), respectively. They represent the
propagation constant and the growth or decay rate of the
corresponding wave. With B,=1.24875B,, the beam
mode intersects with the waveguide mode at two frequen-
cies which are 190.26 GHz and 542.62 GHz. Figure 1(b)
illustrates that an extremely broad unstable bandwidth
expands over the two intersection points. This study will
focus on the bandwidth around the upper intersection
point where CARM interactions can occur.

Figure 2 illustrates the total gain versus frequency of
this amplifier with a 17.5-cm interaction length. In this
figure, the solid line is the gain predicted by our linear
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FIG. 1. The (a) real part and (b) imaginary part of the wave
number versus frequency for a TE;,; mode CARM amplifier:
V,=700 kV, I,=7 A, a=0.525, B=1.20875B,, r,=0.10448
cm,s =1.
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FIG. 2. The gain versus frequency for a TE;; mode CARM
amplifier, predicted by the four-wave model (solid curve), the
nonlinear simulation (dots) and the growth rate of the forward
growing wave from the dispersion relation (dashed curve). The
interaction length is 17.5 cm and other parameters are the same
as in Fig. 1.

theory, where all four waves are taken into account. The
dashed line also representing the total gain is based on
the assumption that the input signal totally couples to the
forward growing wave. The results demonstrate a large
discrepancy between these two predictions. To verify the
results calculated by our linear theory, the self-consistent
model described in Sec. III has been used to simulate the
amplification of the wave. The calculated results have
also been plotted in Fig. 2, showing perfect agreement
with the linear theory. Further confirmation is provided
in Fig. 3, where the evolution of a 400 GHz wave along
the waveguide is plotted as calculated by the linear
theory and the self-consistent simulation. To fully illus-
trate the growth of the wave, the interaction length has
been extended to 60 cm. After an initial region of period-
ic variation, the wave is eventually observed to grow ex-
ponentially at a rate exactly the value predicted by the
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FIG. 3. The spatial power growth of a 400 GHz wave in a
CARM amplifier from the nonlinear simulation (solid curve)
and the linear theory (dots). The system parameters are the
same as in Fig. 1.
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dispersion relation. Note that the wave frequency of 400
GHz is 150 GHz from the upper intersection point be-
tween the beam mode and the waveguide mode and is lo-
cated in a region where the wave and electron are not
well synchronized. The agreement demonstrated above
has strongly confirmed the validity of the four-wave mod-
el and also the adequacy of the dispersion relation.

The discrepancy shown in Fig. 2 can be explained by
considering the coupling of the four waves at the initial
position of the interaction which are the absolute ampli-
tudes of the square brackets in Eq. (1). The relative cou-
pling coefficients for each wave for the operating parame-
ters corresponding to Fig. 2 are plotted in Fig. 4. The
coupling to the backward wave is too weak to be shown
and has not been included. In addition, the coupling to
the forward growing and forward decaying waves are
equal. Therefore, only two curves are shown. From this
figure, the coupling to the unstable wave only becomes
effective around the intersection point (549.62 GHz) and
the constant amplitude forward wave is dominant at a
frequency relatively far from the intersection point. In
other words, the effective bandwidth only exists around
the intersection point while the unstable waves outside
this region cannot grow to a significant amplitude in a
reasonable interaction length because their initial ampli-
tudes are too small. The periodic variation in Fig. 3,
which occurs for frequencies below the effective band-
width, is due to the beating between the forward constant
amplitude wave and the forward growing wave. This is-
sue is further discussed in the following paragraphs.

The physical reason for the weak coupling of the unsta-
ble wave can be understood by inspecting the complex
wave numbers obtained from the dispersion relation.
Complex conjugate pairs with strong coupling between
the wave and electron beam only occur near the intersec-
tion point. The complex conjugate solutions found in
other regions belong to the beam modes which travel
much faster than the “cold” circuit wave (i.e., the TE,
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FIG. 4. The relative coupling coefficients of the forward con-
stant amplitude wave (dashed curve) and the forward growing
wave (solid curve). The system parameters are the same as in
Fig. 1.

waveguide mode in the absence of an electron beam). On
the other hand, the forward constant amplitude wave
propagates rather close to the cold circuit wave in these
regions. From a physical point of view, the wave with a
propagation constant closest to that of the cold
waveguide mode (which is injected into the interaction
region at z=0), is most easily excited among those four
waves since it has the same wave impedance of the input
signal. Thus, the forward constant amplitude wave be-
comes dominant over the forward growing wave at fre-
quencies relatively far from the intersection point.

Compared with linear beam traveling wave tubes
(TWT) or gyrotron traveling-wave tubes (gyro-TWT), the
launching losses of a CARM amplifier are apparently
much more drastic. In a TWT or gyro-TWT, the unsta-
ble wave is always the major component of the four-wave
mixture. Reductions of the interaction gain certainly
occur, but severe curtailment of the bandwidth has not
been observed. Furthermore, the launching loss actually
falls off on both edges of the unstable bandwidth in those
two devices and tends to preserve the bandwidth. The
reason for the different behavior of the launching loss is
due to the way that the beam mode contacts the
waveguide mode. In a TWT or gyro-TWT, the beam
mode is usually set to be almost tangential to the
waveguide mode such that electrons can maintain close
resonance with the wave over a wide frequency range.
However, the beam mode in a CARM amplifier intersects
with the waveguide mode as shown in Fig. 1. Resonance
is weak away from the intersection.

It is worth noting that a sharp negative gain dip ap-
pears on the left side of the effective bandwidth in Fig. 2.
This dip simply indicates that the input power at this fre-
quency is almost totally absorbed by the electron beam at
z=17.5 cm. Figure 5 shows the evolution of the four
waves along the waveguide at 479.57 GHz where the dip
takes place. Since the wavelength is only 0.067 cm, each
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FIG. 5. The spatial evolution of the imaginary part of the
amplitude for the forward constant amplitude wave (solid line)
and the forward growing wave (dashed line) for a 479.57 GHz
wave in a CARM amplifier. Each wave has been divided by
exp(—jkoz).
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wave has been divided by exp(—jk,yz) to eliminate the
fast varying term, where k,, is the wave number of the
cold waveguide. Consequently, the forward constant am-
plitude wave does not display a periodic motion since its
propagation constant is almost equal to that of the cold
waveguide mode. This plot again indicates that the ab-
sorption dip is simply due to the beatings between the
forward constant amplitude wave and the forward grow-
ing wave.

This total absorption of the input signal has been ob-
served to occur only at a specific frequency for each
operating condition. Figure 6 shows that total absorp-
tion would occur at a higher frequency for a shorter in-
teraction length. Since the coupling of the forward grow-
ing wave increases with the frequency as indicated in Fig.
4, the length for it to catch up to the forward constant
amplitude wave becomes shorter.

This phenomenon of total absorption is analogous to
the Kompfner dip which occurs in conventional linear
beam traveling wave amplifiers [16]. The Kompfner dip
has been successfully used for determining the charac-
teristics of the slow wave structure in TWT interactions.
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FIG. 6. The gain versus frequency for a TE;; mode CARM
with an interaction length of (a) 15 cm and (b) 20 cm. Other pa-
rameters are the same as in Fig. 1.
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FIG. 7. The frequency for the Kompfner dip as a function of
a(v,/v,) with B=110.33 kG and the interaction length =17.5
cm. Other parameters are the same as in Fig. 1.

Therefore, useful information regarding the CARM
amplifier can also be provided by determining the condi-
tions for the occurrence of the total absorption of the in-
put signal. For instance, Fig. 7 shows that the Kompfner
dip appears at different frequencies for electron beams
with different a values. In this figure, since the operating
magnetic field is set to be 110.33 kG for each case, the
beam mode intersects with the waveguide mode at a
higher frequency for lower a and the Kompfner dip sub-
sequently appears for a higher frequency.

V. CONCLUSION

A four-wave linear theory and a self-consistent non-
linear theory are used to investigate the discrepancy be-
tween the dispersion relation and the particle simulation
code to predict the bandwidth of a CARM amplifier.
This discrepancy has previously been attributed to the
failure of the linear theory. In contrast, our results show
that the dispersion relation is still applicable and valid for
a CARM at frequencies not close to the intersection
point of the beam mode and the waveguide mode and
that the discrepancy is actually due to launching loss
effects. The excellent agreement between the linear
theory and the self-consistent nonlinear theory proves the
adequacy of the dispersion relation and the four-wave
model for analyzing the linear behavior of the CARM
amplifier.

In addition, the Kompfner dip has also been found to
occur in CARM amplifiers. It is due to the beating be-
tween the forward constant amplitude wave and the for-
ward growing wave. The condition at which this dip
occurs can be used for identifying a CARM’s experimen-
tal parameters.
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